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SURFACE~-FRICTION COEFFICIENT IN TURBULENT FLOW AT A
BOUNDARY LAYER

V. M. Kapinos UDC 532.526

Using Thompson two-parameter velocity profiles equations defining the dependence of
the surface~friction coefficient on the integral characteristics of the boundary layer
are obtained.

Because the initial system of differential equations is not closed, the calculation of
a turbulent boundary layer requires the use of various kinds of empirical relations. In in-
tegral and quasiintegral methods of calculating turbulent friction, one of the closing equa-
tions is taken in the form of a dependence of the surface-friction coefficient on some param~
eters of the boundary layer. Relations of similar type are used in differential calculation
methods assuming a polynomial specification of the frictionmal-stress distribution over the
boundary~-layer thickness. In most cases, it is borne in mind here that turbulent flow is
described from the viewpoint of its local equilibrium, although calculation methods employing
empirical data on the frictional drag and with the determination of a flow field with "in-
heritance” are known [1].

Numerous empirical dependences expressing the friction coefficient as a function of the
Reynolds number referred to the longitudinal coordinate or the momentum-loss thickness are
known. Single-parameter formulas of the form cg = £(Re), cf = f(Reg) are valid at large
Reynolds numbers for boundary layers of a plane plate; sometimes, it is used, together with
the assumption that H = const, in calculations of gradient flows by an integral method. It
is assumed here that the influence of the pressure gradient is taken into account intrinsi-
cally by the integral momentum relation.

Two~ and three-parameter dependences are of greater accuracy, reflecting more completely
the features of the flow in the boundary layer — in particular, with zero pressure gradient.

The most widespread approach is the semiempirical method based on the law of the wall,
the formula of [2]
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;= 0.246.1070-578Hpe50.268 (1)

In a series of integral methods — see [3, 4], etc. — an equation derived from the Coles
wake law [5] is used to determine the frictional stress at the wall

U 1., 08 21 _l/?w‘_ _]/_g,_
= ..-E—ln : +—k—-+B, U = T—mUl,m— 5 - (2)

Other equations of the friction law have been used. Some of these are noted in Table 1 [6-
12}, 1Ia [1, 6, 8, 13], preference is given to the dependence cf = £(H, Reg) proposed in [14].
In [6], it was noted that the family of Thompson velocity profiles on which the dependence

cg = £(H, Reg) isbased is among the most perfect of these profiles. Numerous comparisons of
calculated and experimental data have shown [1, 13, 15, 16] that two-parameter Thompson pro-
files approximate the velocity distribution in the boundary layer with high accuracy. This
is also indicated by the analysis in [20] of the experiments of the Stanford conference [17]
and the experimental investigations [18, 19]. The comparison in [20] of calculated velocity
profiles with experimental data for 25 experiments, including 25 different flows, some of
them relaxational, over a broad range of variation of H and Reg, invariably showed practically
complete coincidence of the -experimental and calculated veloeity distributions.

Thompson represented the dependence of the surface-friction coefficient on H and Reg in
the form of a network of curves H = f(Reg) with the parameter c.. This network was also gi-
ven in [16]. 1In practical calculations, it is difficult to use a network of curves. Therefore,

TABLE 1. Surface-Friction Coefficients

2 Ref, Friction law
6 8,05 71,705
! el ¢ = 0,0580 {lg W] Reg0-268
2 (7] ' ¢r=1,28 (InReg )1+ 7% exp [— H(1,07+0,31 1n (In Reg)]
3 [8] cs = 0,3 exp (— 1,33H) (Ig Re, )1 74+0.31H)
. . 1 U 6% —2
9 U DL Ly — 4,256%/512, ] ,
4 [9] cf 2[Mlln T 26 — 4256°42,12
G= H—1 y = -._CI
oH 2
o 100 \(0.25—6,9:10%%;)
5 7 =0,00810( ) L Ri>0
(71 2 Reg 1
9 [ h Reé.xea)o,ssskl
: du
(= 10700125 = Y S
<0,k = (—k-107) ky U7 dx
- ¢ g_98 d
=—# 2Re0',ﬁ—7w dx
6 [10] c;=2{244In I — li_——6—+10(3+
: ! ' VT T
0,14 ,\1/4]-2 10 | G \-!
S T (24 B
G 8 - du,
¢ =T U1 dx
‘ 0
7 111 - L — 14 0,1367f +0,015/2 4 0,008373, f = —— X
A e,
du, . : =
X et is the drag coefficient when { = 0
8 [12] . _ci_ = (M— __0’00291) Ree—0,25 R
2 0,005934—TI"
8  dp)\ o0,
r= (— pr dx ) Rep
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in [1], for example, a preliminary tabulation of the functions cg¢(H, Reg) and Res(H, Reg)
was recommended. The problem may evidently be significantly simplified if an analytical
description of the network of curves or its approximation is obtained.

The Thompson profile is used here

vo_ _U_) | —
7 Y(Ul,if v 3
The weighting function y is equal to unity in the range 0 < y/§ << 0.05 and to zero close to
the external edge of the boundary layer, where 0.95 < y/§ < 1. Thompson represented the
dependence Y(y/8) by a curve generalizing the experimental data. In {13], the interval 0.05
< y/8 < 0.95 was divided into three sections and was approximated within each section by a
second~order polynomial. :

It may be shown [21] that the function y is related to the Coles wake function W by a
simple linear dependence y = 1—0.5W. If the Hinze approximation for W is adopted (W = 1 —
cos wy/d8), then the function y will be described by the following equation in the range y/§ =
0.05-0.95

/ 10
y=05 (1—}-005 —9——:‘(7]), M= -g——-0.0S. (4)

The difference in the values of y calculated from Eq. (4) and the Galbraith and Head depend-
ence is slight [21].

Thus; the expression obtained for the Thompson velocity profile is

U 10 ® 10
-] o) ) 1o )|

1

_

Rey__l_/’,_y_.
v

The parameters k and B in the equation are taken to be 0.4186 and 5.45, according to the data
of Patel.

In the laminar sublayer and the buffer layer, the velocity distribution is taken in the
form [13]: when 0 < yt < 4 :

= yt
U= ®)
when 4 < y+ < 30 ‘
U+ = 4,187—5,745 In y+ 4 5,11 (In y+)2 — 0,767 (In y+)°. -
' 7
The distribution in Eq. (7) was proposed by Dvorok.

In the range 30v/wU,8 < y/§ < 0.05, where y = 1, the velocity profile is described by a
logarithmic wall law
U

.
=0 (7{ tn Reym—l-B) . (8)

Substituting Eqs. (5)~(8) into the expressions for the displacement thickness and the momen-
tum~loss thickness gives
&% 50,7

—5~ = 0:5—©(0.8009541,1943 In Rega)+ e (9)

% = 0.1125+ o (0.65687 In Reyo — 0,019389) — w? [2.21090 (In Reyw)? +

(10)
-+ 1.8667 InReyo 4 2.94987] — 6;'48

(1 — 16.44@) .
€3
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- Fig. 1. The dependence c¢ = f(Reg, H) ac-
cording to Eqs. (9) and ({0) (continuous
curves) and Eq. (11) (dashed cuves): 1) cf =
0.0002; 2) 0.0003; 3) 0.0004; 4) 0.0006; 5)
0.0008; 6) 0.001; 7) 0.0015; 8) 0,002; 9)
0.0025; 10) 0.003; 11) 0.004; 12) 0.005.

The equations obtained give an analytical desctiption of the network of Thompson curves
(Fig. 1). When w = const, specifying different values of Reg leads to results for §*/8 and
hence for H = 6%/8 and Reg = Reg6/5. Finally, the required dependence cg = f£(H, Reg) is ob-
tained. In comstructing the network of curves in [14], the values H and Reg were obtained
by graphical interpolation. '

Equations (9) and (10), determining the surface-friction coefficient in implicit form,
also include other characteristics, which are usually determined in the course of boundary-
layer calculation. In contrast to the above empirical dependences, Eqs. (9) and (10) allow
ceg ™ f(H, Reg). to be calculated over a broad range of variation of the arguments.

It is known that the formula of [2], which is most often used, is obtained on the basis
of experimental data bounded by the intervals 1.2 < H < 2.0, 10® < Reg < 2° 10“. However,
beyond the limits of this region, as noted in [22], the error may reach 402.

As is evident from Fig. 2, the curves of H = f(Reg) with ¢g = const plotted from the
formulas of [6-8] also lie close to the Thompson curves only at values of H and Reg in the
middle of the given range of variation. When c¢ > 0.002 and c¢ < 0.008, the deviation be=
comes considerable. The explanation for this is that the Thompson model is based on a defi-
nite mathematical model, whereas the remaining formulas directly approximate experimental
data in a limited ramge of variation of the independent variables.

The agreement with the Thompsoﬁ.curves may be improved by some complication of the
approximating expressions. The dashed parametric curves in Fig. 1 are plotted according to
the formula

¢; = 0,000423 exp [— KH + 14,497 (In Reg)=0+], (11)

K = 1,543 when ¢; 3>0,001, K = 1,299¢7°-°%° whenc; << 0,001,

taking account of the nonlinearity of the dependence H = f(Reg). Agreement of the continuous
and dashed curves is observed over a sufficiently broad range of Reg. Equation (11) is sim-
pler than the initial Eqs. (9) and (10) but, of course, lacks something in accuracy.

Equations (9) and (10), which describe the law of frictiom in a turbulent boundary layer,
a%so allow the boundary~layer thickness ¢ to be determined using the integral characteristics
6" and 6.

Close to the external edge of the boundary layer, even a small error of the velocity
profile leads to marked change in the boundary-layer thickness &, equal to the coordinate
at which U = 0.995U;. Therefore, the determination of § directly from the measured or calcu-
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7 4 5 1gReg

Fig. 2. Comparison of the curves of H = f(Reg)

at c¢ = const according to the formulas of [8]
(a), [6] (b), and [7] (c); continuous curve (d)
correspond to the Thompson model: 1) c. = 0.00015;
2) 0.0003; 3) 0.0008; 4) 0,002; 5) 0.004.

lated velocity profile is unreliable. At the same time, the integral characteristics of the
boundary layer 6* and 6 are calculated, as is known, with sufficiently high accuracy. This

accuracy may also be transferred to the determination of the boundary-layer thickness if Eq.
(9) or (10) is used. The value of § is found here by the method of successive approximation.

NOTATION

cf, friction coefficient; H = 6%/6, form parameter; 6%, displacement thickness; 6, mo-
mentum~loss thickness; U, current velocity over the boundary layer thickness; U,, velocity
at the external boundary of the boundary layer; (U/U;)in, velocity distribution according
to the wall law, Eq. (8); §, boundary-layer thickness; vx = VT,/p, dynamic velocity; ut =
U/ve; y+ = y/v*; 1, parameter in the Coles wake law; Re, = Usy/v; Reg = Us8/v; Reg = U,8/v.
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MATHEMATICAL MODEL OF HYDRATE FORMATION IN THE FLOW
OF MOIST GAS IN TUBES

V. M. Bilyushov 4 UDC 532,542

The problem of hydrate formation in the flow of moist gas in tubes is formulated,
under the assumption that the temperature of hydrate formation depends not only
on the pressure but also on the water-vapor concentration at the phase-transition

surface.

The problem of hydrate formation in gas pipelines was first considered in [1-3], where
the conditions of hydrate formation were described, and recommendations for the prevention
of hydrate formation in gas-pipeline operations were made; these reduce to the need to dry
the gas, remove condensed water, and employ pipeline operating conditions that eliminate the
possibility of hydrate formation. The problem was then discussed in [4~10], where attempts
were made to determine in advance the sites of posgsible obstruction of the pipeline by hy-
drates, and to give a quantitative calculation of the mass of hydrate forming in the course of
gas transport. However, these works have a series of deficiencies. In [8], for example, the
mass rate of hydrate formation was estimated, but no'mention was made of which section of the
pipeline was subject to hydrate deposition. In [9], the region of possible hydrate formationm
was determined on the basis of the thermodynamic conditions of moisture removal from the gas,
but the process of hydrate deposition itself was not considered. In [10], the model of hy-
drate formation was constructed from the numerical solution of the equations of nonisothermal
motion of a real gas, and the action of the hydrate obstruction was modeled by a local resis-
tance with an unknown drag coefficient, which is a significant deficiency of the model. ;
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